姓名:

何超

性别:

出生年月:

1986-9

学位:

固体力学工学博士

职称:

特聘副研究员、硕导

联系电话:

028-64698160

电子邮箱:

hechao@scu.edu.cn;hechaoscu@foxmail.com

传真:

028-85406919

通讯地址:

四川省成都市一环路南一段24号

邮编:

610065

 

【个人描述】

日本JSPS特别研究员入选者,中国力学学会会员、日本机械学会会员、自然科学基金委通讯评审专家,长期致力于结构金属材料及其焊接接头超长寿命服役行为的研究工作,在焊接接头超声振动加速疲劳测试、全场宏微观塑性损伤表征和裂纹萌生微纳尺度机制等方面取得创新成果,应用于多个行业关键部件的超长寿命服役评价,在国内外权威期刊发表论文60余篇,其中第一/通讯作者论文30余篇,3篇入选疲劳领域权威期刊《Inter J Fatigue》TOP25论文,近五年引用300余次,在国内外学术会议作邀请报告6次,获2019年四川省科技进步一等奖,担任International Journal of Fatigue; Fatigue Fracture of Engineering Material and Structure; Wear; Materials Science and Technology等期刊审稿人。

欢迎具有力学、材料、机械背景的同学报考研究生。

 

【学习及工作经历】

2019至今四川大学特聘副研究员

2016-2018日本九州大学JSPS研究员

2015-2016成都大学特聘副研究员

2014-2015法国巴黎第十大学联合陪养博士

2010-2015四川大学博士

2006-2010四川大学 学士

 

【主要研究领域】

材料失效行为的微纳尺度机制

焊接接头长寿命服役行为

先进材料超长寿命疲劳

极端条件下材料力学行为

 

【承担的主要课程】

理论力学、损伤力学、疲劳力学前沿问题、数值分析等

 

【主持或参与的科研项目】

主持项目:

1.国家自然科学基金面上项目,界面强化镁合金长寿命疲劳小裂纹原子尺度失效机制研究(62万),2021.1-2024.12

2.四川省科技厅基础研究项目,先进航空钛合金超高周疲劳行为与失效的微纳尺度机理(15万),2021.4-2023.3

3.四川大学科研启动经费,长寿命疲劳小裂纹的微纳机制研究(30万),2019.9-2022.8

4.国家自然科学基金青年项目,超长寿命区间高强铝合金搅拌摩擦焊接头颗粒物致裂机理研究及寿命预测(22万),2017.1-2019.12

5.特別研究员科研启动金(日本学术振兴会),LPSO相高强镁合金超高周疲劳破坏机理解析(220万日元,约13.5万人民币),2016.11-2018.11

6.若手研究(Nanotech Japan),镁合金疲劳滑移特征的原子尺度解析(14.5万日元,约0.9万人民币),2017.12-2018.5

7.四川大学教育部重点实验室开放课题,碳纤维增强树脂基复合材料的超高周疲劳行为研究(3万),2017.05-2019.04

8.四川省教育厅科研基金一般项目,铝合金搅拌摩擦焊接头超长寿命疲劳行为及失效机理(1万),2017.1-2018.12

9.成都大学科研启动经费,焊接接头超长寿命疲劳行为研究(30万),2015.12-2016.11

参与项目:

1.国家自然科学基金重点项目,微结构敏感超高周疲劳机理与超低速裂纹扩展研究(330万),2019.01-2023.12

2. 国家自然科学基金重大仪器研发专项,复杂载荷-环境下超长寿命疲劳振动加速综合实验系统研制(800万),2014.01 -2018.12

 

【代表性论著】

[1]C. He, X. Li, Y. Liu*, C. Wang, H. Zhang, L. Li, Q. Wang*, X. Shao, Q. Chen, Localized dislocation interactions within slip bands and crack initiation in Mg-10Gd-3Y-0.3 Zr alloy, International Journal of Fatigue 150 (2021) 106302.

[2] X. WANG,C. HE*, X. Li, Y. LIU, Q. WANG*, L. LI, H. ZHANG, C. WANG, Crack initiation and propagation characteristics of a dual-phase Mg-Li alloy under high-cycle and very-high-cycle fatigue regimes, Fatigue & Fracture of Engineering Materials & Structures (2021) 13584.

[3] X. WANG,C. HE*, X. Li, L. LI, Y. LIU, Q. WANG*, Effect of long-period stacking ordered structure on very high cycle fatigue properties of Mg-Gd-Y-Zn-Zr alloys, Journal of Magnesium and Alloys (2021) In publication.

[4] J. Song, H. Liu*, K. Tan, Y. Liu, Y. Du, C. Wang,C. He, Q. Wang*, Inhomogeneity of microstructure in friction stir welded TC17 alloy joint and its effects on mechanical behavior, Materials Science and Engineering: A 822 (2021) 141694.

[5] D. Meng, T. Xie, P. Wu,C. He*, Z. Hu, Z. Lv, An uncertainty-based design optimization strategy with random and interval variables for multidisciplinary engineering systems, Structures, Elsevier, 2021, pp. 997-1004.

[6] D. Meng, Y. Li,C. He*, J. Guo, Z. Lv, P. Wu, Multidisciplinary design for structural integrity using a collaborative optimization method based on adaptive surrogate modelling, Materials & Design 206 (2021) 109789.

[7] Y. Liu, F. Liu*, R. He, Q. Wang*, C. Wang,C. He, K.M. Kashif, Y. Chen, Mechanical behaviors of electron beam welded titanium alloy up to very high cycle fatigue under different process conditions, Materials Science and Engineering: A 802 (2021) 140685.

[8] Y. Liu, Y. Chen*,C. He, F. Liu, K. Yang, L. Li, H. Zhang, C. Wang, Q. Wang, Vacuum retarding and air accelerating effect on the high-cycle and very-high-cycle fatigue behavior of a ZK60 magnesium alloy, Materials & Design 198 (2021) 109310.

[9] H. Liu, J. Song, H. Wang, C. Yu, Y. Du,C. He*, Q. Wang*, Q. Chen, Slip-driven and weld pore assisted fatigue crack nucleation in electron beam welded TC17 titanium alloy joint, International Journal of Fatigue (2021) 106525.

[10] F. Liu, Y. Chen,C. He, C. Wang, L. Li, Y. Liu*, Q. Wang*, Very long life fatigue failure mechanism of electron beam welded joint for titanium alloy at elevated temperature, International Journal of Fatigue 152 (2021) 106446.

[11] F. Liu, Y. Chen,C. He, L. Li, C. Wang, H. Li, H. Zhang, Q. Wang*, Y. Liu*, Tensile and very high cycle fatigue behaviors of a compressor blade titanium alloy at room and high temperatures, Materials Science and Engineering: A 811 (2021) 141049.

[12] K. Yang, Q. Huang, B. Zhong, Y.J. Liu,C. He, H. Liu, N. Su, Q. Wang, Q*. Chen, Influence of the volume content of α+ β colonies on the very high cycle fatigue behavior of a titanium alloy, Fatigue & Fracture of Engineering Materials & Structures (2021).

[13] Y. Chen, F. Liu,C. He, L. Li, C. Wang, Y. Liu*, Q. Wang*, Effect of ultrasonic peening treatment on the fatigue behaviors of a magnesium alloy up to very high cycle regime, Journal of Magnesium and Alloys (2021).

[14] Q. Wang, Q. Wang, X. Gong, T. Wang, W. Zhang, L. Li, Y. Liu,C. He, C. Wang, H. Zhang*, A comparative study of low cycle fatigue behavior and microstructure of Cr-based steel at room and high temperatures, Materials & Design 195 (2020) 109000.

[15] Q. Wang, Y. Chen, Y. Liu, C. Wang, L. Li,C. He, X. Gong, T. Wang, W. Zhang, Q. Wang*, The effect of stress ratios on the very high cycle fatigue behavior of 9% cr turbine steel at 630° C, Materials 13(16) (2020) 3444.

[16] X. Shao, H. Liu, H. Yang,C. He, N. Su, Y. Wu, Q. Chen, X. Ma*, Enhanced very high cycle fatigue resistance of solution treated Mg–10Gd–3Y–1Zn–0.5 Zr magnesium alloy containing long-period stacking ordered phase, Materialia 11 (2020) 100672.

[17] F. Liu,C. He, Y. Chen, H. Zhang, Q. Wang*, Y. Liu*, Effects of defects on tensile and fatigue behaviors of selective laser melted titanium alloy in very high cycle regime, International Journal of Fatigue 140 (2020) 105795.

[18] X. Li, R. Zhang, X. Wang, Y. Liu, C. Wang, H. Zhang, L. Li,C. He*, Q. Wang*, Effect of high temperature on crack initiation of super austenitic stainless steel 654SMO in very high cycle fatigue, Materials & Design 193 (2020) 108750.

[19] Y. Hu, Y. Chen,C. He, Y. Liu, Q. Wang*, C. Wang*, Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime, Materials 13(21) (2020) 4820.

[20] Y. Chen, R. Zhang,C. He, F. Liu, K. Yang, C. Wang, Q. Wang*, Y. Liu*, Effect of texture and banded structure on the crack initiation mechanism of a friction stir welded magnesium alloy joint in very high cycle fatigue regime, International Journal of Fatigue 136 (2020) 105617.

[21] Y. Chen,C. He, F. Liu, C. Wang, Q. Xie, Q. Wang*, Y. Liu*, Effect of microstructure inhomogeneity and crack initiation environment on the very high cycle fatigue behavior of a magnesium alloy, International Journal of Fatigue 131 (2020) 105376.

[22]C. He, Y. Wu, L. Peng*, N. Su, Q. Chen, S. Yuan, Y. Liu, Q. Wang*, Effect of microstructure on small fatigue crack initiation and early propagation behavior in Mg-10Gd-3Y-0.3 Zr alloy, International Journal of Fatigue 119 (2019) 311-319.

[23]C. He, X. Shao, S. Yuan, L. Peng*, Y. Wu, Q. Wang*, Q. Chen, Small crack initiation and early propagation in an as-extruded Mg-10Gd-3Y-0.5 Zr alloy in high cycle fatigue regime, Materials Science and Engineering: A 744 (2019) 716-723.

[24] K. Yang, B. Zhong, Q. Huang, C. He, Z.Y. Huang, Q. Wang*, Y.J. Liu, Stress ratio effect on notched fatigue behavior of a Ti-8Al-1Mo-1V alloy in the very high cycle fatigue regime, International Journal of Fatigue 116 (2018) 80-89.

[25] K. Yang, B. Zhong, Q. Huang, C. He, Z.-Y. Huang, Q. Wang*, Y.-J. Liu, Stress ratio and notch effects on the very high cycle fatigue properties of a near-alpha titanium alloy, Materials 11(9) (2018) 1778.

[26]C. He, Y. Wu, L. Peng, N. Su, X. Li, K. Yang, Y. Liu*, S. Yuan, R. Tian, Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg–Gd–Y–Zr Alloy, Materials 11(12) (2018) 2429.

[27]C. HE, X. SHAO, Y. FUKUSHIMA, K. TSUZAKI, Q. WANG*, N. SU, X. HENG, Q. ZHAO, L. PENG, Y. WU,高サイクル疲労におけるMg-Gd-Y-Zr合金押出材の微小き裂挙動,日本機械学会九州支部講演論文集2018.71,一般社団法人 日本機械学会, 2018, p. C45.

[28]C. He, Y. Liu*, J. Li, K. Yang, Q. Wang*, Q. Chen, Very-high-cycle fatigue crack initiation and propagation behaviours of magnesium alloy ZK60, Materials Science and Technology 34(6) (2018) 639-647.

[29] K. Yang,C. He, Q. Huang, Z.Y. Huang, C. Wang, Q*. Wang, Y.J. Liu, B. Zhong, Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios, International Journal of Fatigue 99 (2017) 35-43.

[30] H. LIU,C. HE, Z. HUANG, Q. WANG*, Very high cycle fatigue failure mechanism of TC17 alloy, Acta Metall Sin 53(9) (2017) 1047-1054.

[31]C. He, K. Yang, Y. Liu*, Q. Wang*, M. Cai, Improvement of very high cycle fatigue properties in an AA7075 friction stir welded joint by ultrasonic peening treatment, Fatigue & Fracture of Engineering Materials & Structures 40(3) (2017) 460-468.

[32]C. HE, Q. WANG*, Q. CHEN,溶接継手の超高サイクル疲労強度と破壊機構溶接継手の超高サイクル疲労強度と破壊機構,日本機械学会九州支部講演論文集2017.70,一般社団法人 日本機械学会, 2017, p. 812.

[33]C. He, K. Kitamura, K. Yang, Y.-j. Liu, Q.-y. Wang*, Q. Chen, Very high cycle fatigue crack initiation mechanism in nugget zone of AA 7075 friction stir welded joint, Advances in Materials Science and Engineering 2017 (2017).

[34]C. He, Y. Liu, J. Dong, Q. Wang*, D. Wagner, C. Bathias, Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime, International Journal of Fatigue 82 (2016) 379-386.

[35]李雪,何超,杨昆,刘永杰,王清远*,超声冲击对铝合金搅拌摩擦焊接头超高周疲劳性能的影响,实验力学(6) (2016) 809-818.

[36]C. He, R.-h. Tian, Y.-j. Liu, J.-k. Li, Q.-y. Wang*, Ultrasonic fatigue damage behavior of 304L austenitic stainless steel based on micro-plasticity and heat dissipation, Journal of Iron and Steel Research International 22(7) (2015) 638-644.

[37]C. He, C. Huang, Y. Liu, J. Li, Q. Wang*, Effects of mechanical heterogeneity on the tensile and fatigue behaviours in a laser-arc hybrid welded aluminium alloy joint, Materials & Design (1980-2015) 65 (2015) 289-296.

[38]C. He, Y. Liu, J. Dong, Q. Wang*, D. Wagner, C. Bathias, Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue, International Journal of Fatigue 81 (2015) 171-178.

[39] Y.-j. Liu, S.-m. Cui,C. He, J.-k. Li, Q.-y. Wang*, High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid, Bio-medical materials and engineering 24(1) (2014) 263-269.

[40]C. He, C. Huang, Y. Liu, Q. Wang*, Fatigue damage evaluation of low-alloy steel welded joints in fusion zone and heat affected zone based on frequency response changes in gigacycle fatigue, International Journal of Fatigue 61 (2014) 297-303.

[41]何超,崔仕明,刘永杰,王清远*,气孔对铝合金焊接接头超长疲劳寿命的影响,焊接学报35(11) (2014) 18-22.

[42] Y. Liu,C. He, Q. Wang*, X. Zhao, Low Cycle Fatigue Behavior of 316L Stainless Steel Thin Sheets, Advanced Science Letters 19(6) (2013) 1547-1551.

[43]C. He, Y.J. Liu, Q.Y. Wang*, Ultra-Long Life Fatigue Behavior of Welded Joints with Shot Blast Treatment, Applied Mechanics and Materials, Trans Tech Publications Ltd, 2013, pp. 179-183.

[44]C. He, Y.J. Liu, Q.Y. Wang*, Very high cycle fatigue properties of welded joints under high frequency loading, Advanced Materials Research, Trans Tech Publications Ltd, 2013, pp. 817-821.

[45]C. He, S.M. Cui, Y.Z. Wu, Z.F. Luo, Q.Y. Wang*, Fatigue Crack Initiation Mechanism of Aluminium Alloy Welded Joint in Gigacycle Fatigue, Applied Mechanics and Materials, Trans Tech Publications Ltd, 2013, pp. 177-180.

[46]C. He, S.M. Cui, Y.Z. Wu, Z.F. Luo, Q.Y. Wang*, Simulation of the Global Response of Welded Joint Using Digital Image Correlation Measurement, Advanced Materials Research, Trans Tech Publications Ltd, 2013, pp. 597-600.

[47]C. HE, S.-m. CUI, Z.-f. LUO, Y.-z. WU, Q.-y. WANG*, Research on Tensile Properties of Welded Joint with Mechanical Heterogeneity, Journal of Sichuan University (Engineering Science Edition) (2013) S1.

[48]C. HE, Q.-y. WANG*, Y.-j. LIU, Fatigue Crack Propagation Life of Low Alloy Steel Under Ultrasonic Loading Condition, Journal of Sichuan University (Engineering Science Edition) (2012).

[49]C. He, Y. Liu, D. Fang, Q. Wang*, Very high cycle fatigue behavior of bridge steel welded joint, Theoretical and Applied Mechanics Letters 2(3) (2012) 031010.

[50]刘永杰,何超,杨少波,王清远*,薄片超声弯曲疲劳试验方法研究,四川大学学报:工程科学版(S2) (2012) 154-157.

[51]何超,王清远*,刘永杰,超声加载条件下低合金钢疲劳裂纹扩展寿命,四川大学学报:工程科学版(S2) (2012) 23-26.

[52]C. HE, R.-h. TIAN, Q.-y. WANG*, Study on ultra-long-life fatigue properties of welded joints under high-frequency loading, China Measurement & Test 38(3) (2011) 20-26.

[53]何超,田仁慧,王清远*,高频载荷下焊接接头超长寿命疲劳特性研究,四川省力学学会2010年学术大会论文集 (2010).

获奖与专利

获奖

2019年四川省科技进步奖一等奖

专利

发明专利基于固有频率的超声疲劳裂纹扩展速率测量方法 何超;王清远;刘永杰;李雪;李浪;张宏;王宠

发明专利一种统一试样尺寸的超声疲劳应力放大装置 何超;王清远;刘永杰;李雪;李浪;张宏;王宠

关闭

招聘信息 | 学院介绍 | 机构设置 | 师资队伍 | 科研平台 | 学科建设 | 教学评估


学院地点:成都市四川大学行政楼一楼(望江)
党政办:85405534、85408889 教育发展中心:85405613、85463775 学生工作组:85407049
成都市双流区川大路建环大楼(江安) 党政办:85990865、85999959;学生工作组:85990968
Copyright@2010-2080 acem.scu.edu.cn All Right Reserved 版权所有:澳门永利唯一网址
网站备案:蜀ICP备05006382号 邮编:610000